
Overview of Perl Basics

Just enough to help you read a Perl program
(draft v0.5)
Isaac Lin

2

Types
• Three basic types:

– scalar: number, string, or reference
13, “bunny”

– list/array of scalars
(1, 2, “carrot”, 26)

– hash: associative array
• Simple variable definition with initialization

– $a = 13;
– @a = (“carrot”, “celery”, “lettuce”);
– %a = (carrot => “orange”, celery => “green”);

=> is the same as a comma (,), except that it implicitly quotes
the string on the left-hand side of the =>

• Note $a, @a, and %a are all different variables.

3

Common Perl features, part 1
• all C operators supported
• string comparison operators:

– eq: equal to
– ne: not equal to
– lt: less than
– le: less than or equal
– gt: greater than
– ge: greater than or equal
– cmp: -1 if LHS is less than RHS, 1 if RHS is greater than

LHS, 0 if they are equal
• <=> is the equivalent numeric comparison operator

– string comparisons use ASCII or Unicode sorting order
• concatenation operator

– “bunny” . “ rabbit” eq “bunny rabbit”

4

Conversion of scalars

• Numeric and string scalars are converted upon
need.
– If $a is used in a mathematical expression and $a is a

string, then $a is converted to a number as required.
– If $a is used where a string is expected, and $a is a

number, then $a is converted to a string as required.
– Examples:

my $a = "5";
my $b = $a + 2; # $b == 7
my $c = $b . " steps"; # $c eq "7 steps"

5

The Sigil (a Perl oddity)
• The “sigil” ($, @) is used to determine the return

value, not the variable type.
– a[3] accesses index 3 in the @a list, but you must add a

sigil to determine what type you want the return value to
be.
Examples:
• $b = $a[3];
• @b = @a[3]; # Equivalent to @b = ($a[3]);

– a{"carrot"} accesses associative index “carrot” in the %a
hash.
Examples:
• $b = $a{"carrot"}; OR $b = $a{carrot};
• @b = @a{carrot}; # Equivalent to @b = ($a{carrot});

– Usually, if there is just one index within the [] or {}, you
intend to use a leading $ as the sigil.

within {}, text is
auto-quoted

6

Assigning to lists of variables

• Example of equivalent expressions:
– ($a, $b, $c) = ($a[0], $a[1], $a[2]);
– ($a, $b, $c) = @a[0, 1, 2];
– ($a, $b, $c) = @a[0..2];

7

Scope

• Variables defined with the “my” keyword are local
to the current scope.
– If not within a block (i.e. not within { }), then the current

scope is the file, and the variable is local to the file. It can
be accessed from any scope in the file, but not from other
files.

– Examples:
• my $a = "blue";
• my @a = ("red", "green", "blue");

• Variables defined without the “my” keyword are in
the global scope.
– The variable is accessible from any scope in the file, and

from other files.

8

Scalar and list context
• Expressions are evaluated in either a scalar or list context,

and the return value may be different depending on context.
– @b = @a;

• Since the lvalue is a list, @a is evaluated in list context, which
returns the entire list. The list is then assigned to @b.

– $listLength = @a;
• Since the lvalue is a scalar, @a is evaluated in scalar context,

which returns the length of the list.
– @hashContents = %a;

• %a is evaluated in list context, which returns a flat list of (key1,
value1, key2, value2, ...). This list can be assigned to another hash,
thereby copying the hash.

– Beware: Many standard Perl functions and operators return
different values in scalar or list context.

– Scalar context can be forced using the scalar keyword.
• ($listLength) = scalar @a;

9

Boolean values

• False values:
– 0, empty string (""), and undefined values (undef).
– Uninitialized variables evaluate to undef.
– If no value has been assigned to a given list or hash

index, then an expression that accesses the list or hash
using that index will evaluate to undef.

• True values:
– All other values evaluate to true.

10

Quoting rules
• Double quotes:

– Variables within double quotes are interpolated.
– Escape sequences are expanded. Examples:

• \": "
• \n: newline
• \r: carriage return
• \t: tab
• \xab: hexadecimal value ab is inserted
• \x{abcd}: Unicode code point abcd is inserted

• Single quotes:
– Only two escape sequences are expanded:

• \\: \
• \': '

– No other expansion or interpolation is done.

11

Quote operators
• Operators:

– qq/contents of string/: same as "contents of string "
– q/contents of string/: same as 'contents of string '
– qw/word1 word2 word3/: same as ('word1', 'word2',

'word3')
– Note the / can be replaced by any non-alphanumeric,

non-whitespace character. If (, [, <, or { is used as the first
character, then the matching closing character must be
used as the second character.
• The delimiter character must be escaped within the string;

the usual delimiter (' or ") does not .
• Command execution (backtick) operator

– `command arg1 arg2`: executes command line, and the
results from stdout are interpolated.

– qx/contents of string/: same as `contents of string`
– Example: my $dirListing = `ls -alF`;

12

Subroutines
• If the subroutine is defined before use:

– Can be invoked using sub_name(parameters) or just sub_name
parameters.

– Invocations that appear before the definition:
&sub_name(parameters).

• Parameters passed to the subroutine are accessible within the
subroutine using the @_ list.
– Each element (e.g. $_[0]) is an alias for the variable passed in,

so if you modify it, you modify the original variable.
Examples:

sub increment {
++$_[0];

} # sub increment
sub greetPerson {
my ($name) = @_;
print "Hello, ", $name, "!\n";

}

For legibility, if you do not need
to modify the original variable,

you should copy the parameters
to a local variable.

13

Subroutine return values

• Subroutines can return a scalar or list. Hashes
cannot be returned.
– If a hash is used in a return statement, the hash will be

evaluated in list context. A flat list with the contents of the
hash will be returned.
Example:

sub showColourMap {
return %globalColourMap;

}

– Note a reference is a scalar, and so references can be
returned.
Example:

sub cloneColourMap {
return { %globalColourMap };

}

%globalColourMap is
evaluated in list context,

returning a flat list, and this
list is used to create an
anonymous hash. The

anonymous hash is a copy
of %globalColourMap.

14

Control structures, part 1
• Similar to C, but with some additions:

– for (init-expr; continue-expr; end-of-loop-expr) { ... }
– while (expr) { ... }
– if (expr) { ... } elsif (expr) { ... } else { ... }
– unless (expr) { ... } else { ... }

• same as if (!expr) { ... } else { ... }
– foreach scalar-variable (list) { ... }

• foreach $item (@shoppingList) { ... }
• foreach my $book ('War and Peace', 'A Tale of Two Cities')

{ ... }
• The for and foreach keywords are interchangeable. For

clarity, for is used for traditional for loops, and foreach is
used for iterating through lists

– do { ... }
• Executes the statement block once (but see part 2 for other

possibilities).
– Note the {}’s are mandatory, unlike C.

See “Common
Perl features,

part 3” for more
on foreach

15

Control structures, part 2

• All conditional control structures can be used as a
trailing modifier to a statement.
– $maxValue = $a if $a > $maxValue;

• same as if ($a > $maxValue) { $maxValue = $a; }
– do { multiple statements } while ($a <= $maxIterations);

• same as while ($a<=$maxIterations) { multiple statements }
– print $char foreach my $char (@characters);

• same as foreach my $char (@characters) { print $char; }
– Note () around the expression is optional when the control

structure is used as a trailing modifier.

16

Control structures, part 3

• Shortcuts for if and unless statements
– doStuff($a) or print "Failed\n";

• same as unless (doStuff($a)) { print "Failed\n"; } except that
no value is returned by the unless statement

– openBag($bag) and packStuff($bag);
• same as if (openBag($bag)) { packStuff($bag); } except that

no value is returned by the if statement
– Older code may use || and &&, but because of problems

related to operator precedence, use or and and instead
(they have lowest precedence).

– Continue to use ||, &&, and ! in expressions. Because or
and and have lowest precedence, using them in
expressions can cause confusion.

17

References

• References to other variables
– $scalarRef = \$a;
– $listRef = \@a;
– $hashRef = \%a;

• References to anonymous lists or hashes
– $listRef = ["my", "happy", "bunny"];
– $hashRef = { carrot => "tasty", "rice cakes" => "dry" };

• References to subroutines:
– $subRef = \&increment;

• References to anonymous subroutines
– $subRef = sub { print "What’s up?\n"; };

18

De-referencing references

• Enclose the reference within {} and add the
appropriate prefix ($, @, %):
– Scalar reference: ${$scalarRef}
– List reference: @{$listRef}
– Hash reference: %{$hashRef}

• To dereference a list or hash and index it, use the ->
operator.
– $a = $listRef->[3];
– $a = $hashRef->{carrot};
– If you are accessing nested references, the -> can be

omitted between][or }{.
• $a = $listOfLists->[3][4]; # same as $listOfLists->[3]->[4]
• $a = $hashOfHashes->{carrot}{price};

same as $hashOfHashes->{carrot}->{price}

19

Packages

• Naming conventions:
– A file defining a Perl package has a .pm extension.
– The package name can be hierarchical, such as

XML::Parser::Lite.
• This maps to XML/Parser/Lite.pm. (i.e. the XML subdirectory

+ the Parser subdirectory + the Lite.pm file).
• A Perl script includes a package as follows:

use XML::Parser::Lite;
• The Perl compiler will search the library search path for

XML/Parser/Lite.pm.
• The Perl script can add to the library search path using the

use lib directive:
use lib '/opt/projects/MyProj/lib/perl';

20

Creating and using a package

• Grocery/Vegetable/Carrot.pm:
package Grocery::Vegetable::Carrot;

... Contents of your package go here
sub countCarrots { ... }

1; # The last statement in the file must return a true
value.

• Invoking subroutines from a package:
User code
use Grocery::Vegetable::Carrot;

my $carrotCount = Grocery::Vegetable::Carrot::countCarrots();

– Packages can provide an import() subroutine that
exports subroutines into the user’s scope, so that
countCarrots() can be called without having to qualify it
with the package name.
• See the Exporter module man page for more information.

21

Common Perl features, part 2
• push and pop operators

– push @a, "cucumber";
• Adds "cucumber" to @a as the last element.

– pop @a;
• Removes the last element from @a and returns it.

• shift and unshift operator.
– $firstElem = shift @a;

• Removes a[0] from the list and shifts down all of the following
elements (a[1] is moved to a[0], etc.).

• a[0] is returned.
• If no variable is specified as an argument to shift, then the @_ list is

used.
• Commonly used within subroutines to process the argument list.

– unshift @a, "rabbit";
• Shifts up all elements in @a (a[0] is moved to a[1], etc.) and adds

"rabbit" to @a as the first element.

22

Classes

• A Class is a package that provides a constructor.
• A constructor is a subroutine in the package that

returns a blessed reference.
package Grocery;
sub new {

my $class = shift;
my $self = {};
%{$self} = @_;
return bless $self, $class;

}
1;

• Invoked as follows:
– my $obj = Grocery->new(name => "Sam's");
– The class name is automatically passed in as the first

argument.

23

Methods

• All subroutines within the package for the class are
methods.
package Grocery;
...
sub displaySign {
my ($self,$tagline) = @_;
print $self->{name}, " Grocery\n", $tagline, "\n";

}
...
User code:
$obj->displaySign("Free cookies!");

– The object reference is automatically passed in as the
first parameter.

24

Inheritance of methods

• The @ISA global variable is used to specify the
superclasses for a class.
package Grocery::Vegetable::Carrot;
push @ISA, 'Grocery::Vegetable';

– When a method is invoked on an object, if a
corresponding subroutine is not found within the object’s
class, then each class in the @ISA list is searched in
order, until a match is found.

– Usually inheritance follows the package hierarchy (e.g.
Grocery::Vegetable::Carrot inherits from
Grocery::Vegetable). However, it does not have to.
• In this example, Vegetable is not a Grocery; putting the

Vegetable package under the Grocery package is just a way
to organize the packages, and not the class hierarchy.

25

File and directory handles

• Uninitialized variables defined with the my keyword
can be used as file or directory handles.
{
my $fh;
open $fh, '<', 'some_file'; # open for reading
close $fh;

}

– The file handle will be closed automatically when $fh goes
out of scope, if you forget to do it.

– To open a file for writing, use ‘>’ as the second argument.
– See the perlfunc man page for more choices for the

second argument.

26

I/O

• Writing to a filehandle
– print $fh arg1, arg2, arg3;

– If the handle is omitted, output goes to STDOUT
• print arg1, arg2, arg3;

– Printing to stderr: print STDERR arg1, arg2, arg3;
• Reading from a file using line input (angle) operator

– Scalar context: my $line = <$fh> reads one line from the
file.

– List context: my @lines = <$fh> reads in all lines, placing
one line in each list element.

– When the end of file is reached, <$fh> returns undef.

Note there is no comma
between the file handle
and the first argument.

27

Common Perl features, part 3
• while (<$fh>) { ... }

– By default, each line read in from $fh is stored in $_.
– When the end of file is reached, <$fh> will return undef,

and the while loop will be exited.
– To avoid problems with nested loops, it is preferable to

use an explicit assignment:
while (my $line = <$fh>) { ... }

• foreach (some_list) { ... }
– Assigns each element of the list to $_ and executes the

loop body.
– $_ is an alias for the original value, so modifying $_ will

modify the value.
– foreach my $val (some_list) can be used to avoid implicit

assignment to $_.
– Examples: foreach my $val (@a) { ... },

foreach my $line (<$fh>) { ... }
foreach my $val ($a, $b, $c) { ... }

28

Common Perl features, part 4
• file test operators

– Similar to the file test operations available in the Unix test
command.

– -f filename: File is an ordinary file.
– -r filename: File is readable.
– -w filename: File is writeable.
– -x filename: File is executable.
– -e filename: File exists.
– -z filename: File is zero size.
– -s filename: File is non-zero size (returns size).
– -d filename: File is actually a directory.
– -l filename: File is a symbolic link.

29

Regular Expressions, part 1
• A regular expression is a pattern for matching

strings.
• Basic syntax (see perlre man page for more details):

– Special metacharacters: . * + ? () | [{ ^ $ \
– Variables within the regular expression are interpolated.

Thus @ and % are also special characters.
– All other characters match directly.
– . matches any character
– foo|bar matches either foo or bar
– [abcd] matches either a, b, c, or d
– [^abcd] matches any character other than a, b, c, or d
– ^ at the start of the pattern means that the pattern must

start matching from the beginning of the string.
– $ at the end of the pattern means that the pattern must

finish matching at the end of the string.

30

Regular Expressions, part 2

– Quantifiers:
• a* matches zero or more occurrences of a
• a+ matches one or more occurrences of a
• a? matches zero or one occurrences of a
• a{1,3} matches one, two, or three occurrences of a
• a{3} matches aaa
• () are used for grouping. Example: foo(bar)* matches foo

followed by zero or more occurrences of bar
• Quantifier matching is greedy. From left to right, as much as

possible of each quantifier is matched, as long as the entire
pattern can still match.
– e.g. if matching (foo)?(foo){1,2}(foo)+(foo)* against

“foofoofoofoofoo”, (foo)? matches the first foo, (foo){1,2}
matches the second and third foo’s, (foo)+ matches the
fourth and fifth foo’s, and (foo)* matches zero foo’s.

31

Regular Expressions, part 3

– \s matches any whitespace character (e.g space, tab,
newline). \S matches any non-whitespace character.

– \d matches any digit character. \D matches any non-digit
character.

– \w matches alphanumeric characters and _ (“word”
characters). \W matches any non-word character.

– \b matches a word boundary (transition from word
character to non-word character, or vice versa).

– \ followed by a non-alphanumeric character (including all
special characters): matches that character

– \x{abcd} matches hexadecimal character abcd.
– \Q is a special instruction: any following metacharacters in

the pattern up to \E are automatically escaped (“quoted”).

32

Matching with regular expressions
• The string to be matched is bound to a matching

operator.
– The expression evaluates to true if a match is found.
– Traditional syntax: $a =~ /some_pattern/
– Alternate syntax: $a =~ m/some_pattern/

• With the alternate syntax, any non-alphanumeric, non-
whitespace character can be used instead of /. e.g. $a =~
m!some_pattern!

• If (, [, <, or { is used as the first character, then the matching
closing character must be used as the second character.
e.g. $a =~ m(some_pattern)

• The alternate syntax is especially useful when the pattern
contains /.

– Examples:
print "My favourite foods!\n" if
($a =~ /^(pizza|steak)$/);

my $fUnderOptDir = $a =~ m,^/opt/,;

33

Capturing matches

• Any subpatterns grouped with () are captured in $1,
$2, etc.
– The subpatterns are numbered by the position of the

corresponding opening parenthesis (.
– Example:

"mississippi" =~ /((iss)*ipp)/;
$1 = "ississipp" and $2 = "iss"

– To disable capturing for a group, use (?: ...)
"mississippi" =~ /((?:iss)*ipp)/;
$1 = "ississipp", $2 is not set by the match

34

Substitutions with regular expressions
• The substitution operator is used to find a matching pattern

and replace it.
– The expression evaluates to true if a match is found.
– Traditional syntax: $a =~ s/pattern/replacement/
– Alternate syntax: Any non-alphanumeric, non-whitespace

character can be used instead of /. If (, [, <, or { is used as the
first character, then the matching closing character must be
used as the second character, and another pair of characters is
used to surround replacement. e.g. s{cake}<cookies>,
s[cookies][candy]

– Examples:
$a =~ s/\bgreat\b/stupendous/g;
$a =~ s,\bmug(s)?\b,cup$1,g;

• Without the /g (“global”) modifier at the end, after one match,
processing stops. With the /g modifier, after any match, the string is
processed again, starting from the end of the previous match.

• Note how captured matches can be used in the replacement
pattern

$a =~ s,^[Ff]irst,1st,;

35

Backreferences within the pattern

• Backreferences can be used to reference part of the
pattern that had matched earlier.
– Example: $a =~ /Take the (boy|girl) to the \1s room\./

36

More information

• ActiveState Perl documentation
– http://aspn.activestate.com/ASPN/docs/ActivePerl

• Comprehensive Perl Archive Network (CPAN)
– http://www.cpan.org/

• CBM/SDM Perl coding guidelines
– http://cbmproduct.ca.nortel.com/ -> Programming Model -

> Application Guidelines -> Coding Guidelines: Perl
– Note the Programming Model -> Programming

References -> Perl page has links to the ActiveState
documentation and CPAN.

